Simulation of Interaction of Synchrotron Radiation Emission as a Function of the Beam Energy and Californium Nanoparticles Using 3D Finite Element Method (FEM) as an Optothermal Human Cancer Cells, Tissues and Tumors Treatment

Alireza Heidari1,2, Katrina Schmitt1, Maria Henderson1, Elizabeth Besana1

1Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA
2American International Standards Institute, Irvine, CA 3800, USA

Graphical Abstract

In the current study, thermoplasmonic characteristics of Californium nanoparticles with spherical, core–shell and rod shapes are investigated. In order to investigate these characteristics, interaction of synchrotron radiation emission as a function of the beam energy and Californium nanoparticles were simulated using 3D finite element method. Firstly, absorption and extinction cross sections were calculated. Then, increases in temperature due to synchrotron radiation emission as a function of the beam energy absorption were calculated in Californium nanoparticles by solving heat equation. The obtained results show that Californium nanorods are more appropriate option for using in optothermal human cancer cells, tissues and tumors treatment method.

Keywords: Californium Nanoparticles, Scanning Electron Microscope (SEM), 3D Finite Element Method (FEM), Heat Transfer Equation, Optothermal, Heat Distribution, Thermoplasmonic, Californium Nanorods, Human Cancer Cells, Tissues and Tumors Treatment, Simulation, Synchrotron Radiation, Emission, Function, Beam Energy
Introduction

In recent decade, metallic nanoparticles have been widely interested due to their interesting optical characteristics [1–8]. Resonances of surface Plasmon in these nanoparticles lead to increase in synchrotron radiation emission as a function of the beam energy scattering and absorption in related frequency [9, 10]. Synchrotron radiation emission as a function of the beam energy absorption and induced produced heat in nanoparticles has been considered as a side effect in plasmonic applications for a long time [11–15]. Recently, scientists find that thermoplasmonic characteristic can be used for various optothermal applications in cancer, nanoflows and photonic [16–22]. In optothermal human cancer cells, tissues and tumors treatment, the descendent laser light stimulate resonance of surface Plasmon of metallic nanoparticles and as a result of this process, the absorbed energy of descendent light converse to heat in nanoparticles [23–25]. The produced heat devastates tumor tissue adjacent to nanoparticles without any hurt to sound tissues [26, 27]. Regarding the simplicity of ligands connection to Californium nanoparticles for targeting cancer cells, these nanoparticles are more appropriate to use in optothermal human cancer cells, tissues and tumors treatment [28–74]. In the current paper, thermoplasmonic characteristics of spherical, core–shell and rod Californium nanoparticles are investigated.

Heat Generation in Synchrotron Radiation Emission as a Function of the Beam Energy–Californium Nanoparticles Interaction

When Californium nanoparticles are subjected to descendent light, a part of light scattered (emission process) and the other part absorbed (non–emission process). The amount of energy dissipation in non–emission process mainly depends on material and volume of nanoparticles and it can be identified by absorption cross section. At the other hand, emission process which its characteristics are depend on volume, shape and surface characteristics of nanoparticles explains by scattering cross section. Sum of absorption and scattering processes which lead to light dissipation is called extinction cross section [75–123].

Californium nanoparticles absorb energy of descendent light and generate some heat in the particle. The generated heat transferred to the surrounding environment and leads to increase in temperature of adjacent points to nanoparticles. Heat variations can be obtained by heat transfer equation [124–202].

Simulation

To calculate the generated heat in Californium nanoparticles, COMSOL software which works by Finite Element Method (FEM) was used. All simulations were made in 3D. Firstly, absorption and scattering cross section areas were calculated by optical module of software. Then, using heat module, temperature variations of nanoparticles and its surrounding environment were calculated by data from optical module [203–283]. In all cases, Californium nanoparticles are presented in water environment with dispersion coefficient of 1.84 and are subjected to flat wave emission with linear polarization. Intensity of descendent light is 1 mW/μm². Dielectric constant of Californium is dependent on particle size [284–381].

Firstly, calculations were made for Californium nanospheres with radius of 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 nanometers. The results show that by increase in nanoparticles size, extinction cross section area increases and maximum wavelength slightly shifts toward longer wavelengths. The maximum increase in temperature of nanospheres in surface Plasmon frequency is shown in Figure 1.

According to the graph, it can be seen that the generated heat is increased by increase in nanoparticles size. For 100 (nm) nanoparticles (sphere with 50 (nm) radius), the maximum increase in temperature is 83 (K). When nanoparticles size reaches to 150 (nm), increase in temperature is increased in spite of increase in extinction coefficient. In order to find the reason of this fact, ratio of absorption to extinction for various nanospheres in Plasmon frequency is shown in Figure 2.

Figure 2 shows that increasing the size of nanospheres leads to decrease in ratio of light absorption to total energy of descendent light so that for 150 (nm) nanosphere, scattering is larger than absorption. It seems that although increase in nanoparticles size leads to more dissipation of descendent light, the dissipation is in the form of scattering and hence, it cannot be effective on heat generation.

Heat distribution Figure 3 shows that temperature is uniformly distributed throughout the nanoparticles which are due to high thermal conductivity of Californium.

In this section, core–shell structure of Californium and silica is chosen. The core of a nanosphere with 45 (nm) radius and silica layer thickness of 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 nanometers are considered. The results show that increase in silica thickness leads to increase in extinction coefficient and shift in Plasmon wavelength of nanoparticles, to some extent.
According to Figure 4, silica shell causes to considerable increase in temperature of Californium nanoparticles but by more increase in silica thickness, its effects are decreased. Heat distribution (Figure 5) shows that temperature is uniformly distributed throughout metallic core as well as silica shell. However, silica temperature is considerably lower than core temperature due to its lower thermal conductivity. In fact, silica layer prohibits heat transfer from metal to the surrounding aqueous environment due to low thermal conductivity and hence, temperature of nanoparticles has more increase in temperature. Increasing the thickness of silica shell leads to increase in its thermal conductivity and hence, leads to attenuate in increase in nanoparticles temperature.

Figure 3: Maximum increase in temperature for spherical nanoparticles with radius of 45 (nm) at Plasmon wavelength of 685 (nm).

Figure 4: Maximum increase in temperature for core–shell Californium nanospheres with various thicknesses of silica shell.

Figure 5: Maximum increase in temperature for core–shell nanoparticles with radius of 45 (nm) and silica thickness of 10 (nm) at Plasmon wavelength of 701 (nm).

Figure 6: Extinction cross section area for Californium nanorods with effective radius of 45 (nm) and various dimension ratios.

Figure 7: Maximum increase in temperature for nanorods with effective radius of 20 and 45 (nm) and various dimension ratios.

Figure 6 is drawn. This graph shows that variation of nanorod dimension ratio leads to considerable shift in Plasmon wavelength. This fact allows regulating the Plasmon frequency to place in near IR zone. Light absorption by body tissues is lower in this zone of spectrum and hence, nanorods are more appropriate for optothermal human cancer cells, tissues and tumors treatment methods.

Variations of temperature in Californium nanorods with two effective radius and various dimension ratios are shown in Figure 7. By increase in length (a) to radius (b) of nanorod, temperature is increased.

Conclusion and Summary

The calculations showed that in Californium nanoparticles, light absorption in Plasmon frequency causes to increase in temperature of...
the surrounding environment of nanoparticles. In addition, it showed that adding a thin silica layer around the Californium nanospheres increases their temperatures. Calculations of nanorods showed that due to ability for shifting surface Plasmon frequency toward longer wavelength as well as more increase in temperature, this nanostructure is more appropriate for medical applications such as optothermal human cancer cells, tissues and tumors treatments.

Acknowledgements

Authors are supported by an American International Standards Institute (AISI) Future Fellowship Grant FT12010093734725. We acknowledge Ms. Isabelle Villena for instrumental support and Dr. Michael N. Cocchi for constructing graphical abstract figures. We gratefully acknowledge Prof. Dr. Christopher Brown for proof reading the manuscript. Synchrotron beam time was awarded by the National Synchrotron Light Source (NSLS–II) for constructing graphical abstract figures. We gratefully acknowledge Ms. Isabelle Villena for instrumental support and Dr. Michael N. Cocchi (AISI) Future Fellowship Grant FT12010093734725. We acknowledge and tumors treatments.

References


18. Heidari A. “Measurement of the Amount of Vitamin D3 (Ergocalciferol), Vitamin D3 (Cholecalciferol) and Absorbable Calcium (Ca2+), Iron (II) (Fe2+), Magnesium (Mg2+), Phosphate (Po43−) and Zinc (Zn2+) in Apricot Using High-Performance Liquid Chromatography (HPLC) and Spectroscopic Techniques”. J BiomBiostat.2016; 7: 292.

19. Heidari A. “Spectroscopy and Quantum Mechanics of the Helium Dimer (He2 +), Neon Dimer (Ne2 +), Argon Dimer (Ar2 +), Krypton Dimer (Kr2 +), Xenon Dimer (Xe2 +), Radon Dimer(Xe2 +) and Ununoctium Dimer (Uuo2 +) Molecular Cations”. Chem Sci J. 2016; 7: e112.


69. Heidari A. “Polymorphism in Nano-Sized Graphene Ligand-Induced Transformation of Au38-xAgx/xCuX(SPh-tBu)24 to Au36-xAgx/xCuX(SPh-tBu)24 (x = 1-12) Nanomolecules for Synthesis of Au144-xAgx/xCuX(SR)60, (SC4)60, (SC6)60, (SC12)60, (PET)60, (p-MBA)60, (F)60, (Cl)60, (Br)60, (I)60, (At)60, (Uus)60 and (SC6H13)60. Nano Clusters as Anti-Cancer Nano Drugs”. J Nanomater Mol Nanotechnol. 2017; 6: 3.

70. Heidari A. “Biomedical Resource Oncology and Data Mining to Enable Resource Discovery in Medical, Medicinal, Clinical, Pharmaceutical, Chemical and Translational Research and Their Applications in Cancer Research”. Int J Biomed Data Min. 2017; 6: e103.


82. Heidari A. “Treatment of Breast Cancer Brain Metastases through a Targeted Nanomolecule Drug Delivery System Based on Dopamine Functionalized Multi-Wall Carbon Nanotubes (MWCNTs) Coated with Nano Graphene Oxide (GO) and Protonated Polyaniline (PANI) in Situ During the Polymerization of Aniline Autogenic Nanoparticles for the Delivery of Anti-Cancer Nano Drugs under Synchrotron Radiation”. Br J Res. 2017; 4 (3): 16.


94. Heidari A. “Modern Approaches in Designing Ferritin, Ferritin Light Chain, Transferrin, Beta-2 Transferrin and Bacterioferritin-Based Anti-Cancer Nano Drugs Encapsulating Nanosphere as DNA-Binding Proteins from Starved Cells (DPS)”. Mod Appro Drug Des. 2017; 1(1).


111. Heidari A. “Vibrational Deciherertz (dhHz), Centiherertz (cHz), Milliherertz (mHz), Microherertz (μHz), Nanohertz (nHz), Picohertz (pHz), Femtohertz (fHz), Attoherertz (ahHz), Zeptohertz (zHz) and Yoctohertz (yHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”. International Journal of Biomedicine. 2017; 7(4): 335-340.


116. Heidari A. “Vibrational Decahertz (daHz), Hectohertz (hHz), Kilohertz (kHz), Megahertz (MHz), Gigahertz (GHz), Terahertz (THz), Petahertz (PHz), Exahertz (EHz), Zettaherertz (ZHz) and YottaHz (yHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”. Madridge J Anal Sci Instrum. 2017; 2(1): 41-46.


119. Heidari A. “Infrared Photo Dissociation Spectroscopy and Infrared Correlation Table Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time”. Austin Pharmacol Pharm. 2018; 3(1): 1011.


129. Heidari A. “Heteronuclear Correlation Experiments such as Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Quantum Correlation Spectroscopy (HMQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Endocrinology and Thyroid Cancer Cells and Tissues under Synchrotron Radiation”. J Endocrinol Thyroid Res. 2018; 3(1): 555603.


132. Heidari A. “Pros and Cons Controversy on Heteronuclear Correlation Experiments such as Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Quantum Correlation Spectroscopy (HMQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”. EMS Pharma J. 2018; 1(1): 02-08.


165. Heidari A. “Cadaverine (1,5-Pentanediamine or Pentamethylenediamine), Diethyl Azodicarboxylate (DEAD or DEADCAT) and Putrescine (Tetramethylenediamine) Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations”. Hiv and Sexual Health Open Access Open Journal. 2018; 1(1): 4-11.


170. Heidari A. “Uranocene (U(C8H8)2) and Bis(Cyclooctatetraene) Iron (Fe(C8H8)2 or Fe(COT)2)-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules”. Chemistry Reports. 2018; 1(2): 1-16.


Heidari A. “Two-Dimensional (2D) 1H or Proton NMR, 13C NMR, 15N NMR and 31P NMR Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time”. Glob Imaging Insights. 2018; 3(6): 1-8.


Heidari A. “Curious Chloride (CmCl3) and Titanic Chloride (TiCl4)-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules for Cancer Treatment and Cellular Therapeutics”. J. Cancer Research and Therapeutic Interventions. 2018; 3(1): 1-10.

Heidari A. “Buckminsterfullerene (Fullerene), Bullvalene, Dickte and Josiphos Ligands Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrone (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations”. J. Cancer Research and Therapeutic Interventions. 2018; 3(6): 1-8.


205. Heidari A. “2-Amino-9-[(1S, 3R, 4R)-4-Hydroxy-3-(Hydroxymethyl)-2-Methylenecyclopentyl]-1H-Purin-6(9H)-One, 2-Amino-9-{(1R, 3R, 4R)-4-Hydroxy-3-(Hydroxymethyl)-2-Methylenecyclopentyl}-1H-Purin-6(9H)-One, 2-Amino-9-{(1R, 3R, 4S)-4-Hydroxy-3-(Hydroxymethyl)-2-Methylenecyclopentyl}-1H-Purin-6(9H)-One and 2-Amino-9-{(1S, 3R, 4S)-4-Hydroxy-3-(Hydroxymethyl)-2-Methylenecyclopentyl}-1H-Purin-6(9H)-One-Enhanced Precatalyst Preparation Stabilization and Initiation Nano Molecules”. Glob Imaging Insights. 2018; 3(6): 1-9.


